An application of the Krasnoselskii theorem to systems of algebraic equations
نویسندگان
چکیده
Based on the Krasnoselskii theorem, we study the existence, multiplicity and nonexistence of positive solutions of general systems of nonlinear algebraic equations under superlinearity and sublinearity conditions. Systems of nonlinear algebraic equations often arise from studies of differential and difference equations. Our results significantly extend and improve those in the literature. A number of examples and open questions are given to illustrate these results.
منابع مشابه
The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملNew results for fractional evolution equations using Banach fixed point theorem
In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملNew concepts on the fuzzy linear systems and an application
As we know, developing mathematical models and numerical procedures that would appropriately treat and solve systems of linear equations where some of the system's parameters are proposed as fuzzy numbers is very important in fuzzy set theory. For this reason, many researchers have used various numerical methods to solve fuzzy linear systems. In this paper, we define the concepts of midpoint a...
متن کامل